Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2308815, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38161254

RESUMO

Non-neural extracellular matrix (ECM) has limited application in humanized physiological neural modeling due to insufficient brain-specificity and safety concerns. Although brain-derived ECM contains enriched neural components, certain essential components are partially lost during the decellularization process, necessitating augmentation. Here, it is demonstrated that the laminin-augmented porcine brain-decellularized ECM (P-BdECM) is xenogeneic factor-depleted as well as favorable for the regulation of human neurons, astrocytes, and microglia. P-BdECM composition is comparable to human BdECM regarding brain-specificity through the matrisome and gene ontology-biological process analysis. As augmenting strategy, laminin 111 supplement promotes neural function by synergic effect with laminin 521 in P-BdECM. Annexin A1(ANXA1) and Peroxiredoxin(PRDX) in P-BdECM stabilized microglial and astrocytic behavior under normal while promoting active neuroinflammation in response to neuropathological factors. Further, supplementation of the brain-specific molecule to non-neural matrix also ameliorated glial cell inflammation as in P-BdECM. In conclusion, P-BdECM-augmentation strategy can be used to recapitulate humanized pathophysiological cerebral environments for neurological study.

2.
Biomaterials ; 279: 121246, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34775331

RESUMO

Despite notable advances in extrusion-based 3D bioprinting, it remains a challenge to create a clinically-sized cellular construct using extrusion-based 3D printing due to long printing times adversely affecting cell viability and functionality. Here, we present an advanced extrusion-based 3D bioprinting strategy composed of a two-step printing process to facilitate creation of a trachea-mimetic cellular construct of clinically relevant size. A porous bellows framework is first printed using typical extrusion-based 3D printing. Selective printing of cellular components, such as cartilage rings and epithelium lining, is then performed on the outer grooves and inner surface of the bellows framework by a rotational printing process. With this strategy, 3D bioprinting of a trachea-mimetic cellular construct of clinically relevant size is achieved in significantly less total printing time compared to a typical extrusion-based 3D bioprinting strategy which requires printing of an additional sacrificial material. Tracheal cartilage formation was successfully demonstrated in a nude mouse model through a subcutaneous implantation study of trachea-mimetic cellular constructs wrapped with a sinusoidal-patterned tubular mesh preventing rapid resorption of cartilage rings in vivo. This two-step 3D bioprinting for a trachea-mimetic cellular construct of clinically relevant size can provide a fundamental step towards clinical translation of 3D bioprinting based tracheal reconstruction.


Assuntos
Bioimpressão , Animais , Cartilagem , Condrogênese , Camundongos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Traqueia
3.
Biofabrication ; 13(4)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34551404

RESUMO

Traumatic brain injury is one of the leading causes of accidental death and disability. The loss of parts in a severely injured brain induces edema, neuronal apoptosis, and neuroinflammation. Recently, stem cell transplantation demonstrated regenerative efficacy in an injured brain. However, the efficacy of current stem cell therapy needs improvement to resolve issues such as low survival of implanted stem cells and low efficacy of differentiation into respective cells. We developed brain-derived decellularized extracellular matrix (BdECM) bioink that is printable and has native brain-like stiffness. This study aimed to fabricate injured cavity-fit scaffold with BdECM bioink and assessed the utility of BdECM bioink for stem cell delivery to a traumatically injured brain. Our BdECM bioink had shear thinning property for three-dimensional (3D)-cell-printing and physical properties and fiber structures comparable to those of the native brain, which is important for tissue integration after implantation. The human neural stem cells (NSCs) (F3 cells) laden with BdECM bioink were found to be fully differentiated to neurons; the levels of markers for mature differentiated neurons were higher than those observed with collagen bioinkin vitro. Moreover, the BdECM bioink demonstrated potential in defect-fit carrier fabrication with 3D cell-printing, based on the rheological properties and shape fidelity of the material. As F3 cell-laden BdECM bioink was transplanted into the motor cortex of a rat brain, high efficacy of differentiation into mature neurons was observed in the transplanted NSCs; notably increased level of MAP2, a marker of neuronal differentiation, was observed. Furthermore, the transplanted-cell bioink suppressed reactive astrogliosis and microglial activation that may impede regeneration of the injured brain. The brain-specific material reported here is favorable for NSC differentiation and suppression of neuroinflammation and is expected to successfully support regeneration of a traumatically injured brain.


Assuntos
Lesões Encefálicas Traumáticas , Células-Tronco Neurais , Animais , Encéfalo , Lesões Encefálicas Traumáticas/terapia , Impressão Tridimensional , Ratos , Alicerces Teciduais
4.
J Vis Exp ; (167)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33491677

RESUMO

Cancer microenvironment has a significant impact on the progression of the disease. In particular, hypoxia is the key driver of cancer survival, invasion, and chemoresistance. Although several in vitro models have been developed to study hypoxia-related cancer pathology, the complex interplay of the cancer microenvironment observed in vivo has not been reproduced yet owing to the lack of precise spatial control. Instead, 3D biofabrication approaches have been proposed to create microphysiological systems for better emulation of cancer ecology and accurate anticancer treatment evaluation. Herein, we propose a 3D cell-printing approach to fabricate a hypoxic cancer-on-a-chip. The hypoxia-inducing components in the chip were determined based on a computer simulation of the oxygen distribution. Cancer-stroma concentric rings were printed using bioinks containing glioblastoma cells and endothelial cells to recapitulate a type of solid cancer. The resulting chip realized central hypoxia and aggravated malignancy in cancer with the formation of representative pathophysiological markers. Overall, the proposed approach for creating a solid-cancer-mimetic microphysiological system is expected to bridge the gap between in vivo and in vitro models for cancer research.


Assuntos
Progressão da Doença , Dispositivos Lab-On-A-Chip , Neoplasias/patologia , Impressão Tridimensional , Hipóxia Tumoral , Linhagem Celular Tumoral , Sobrevivência Celular , Colágeno/farmacologia , Simulação por Computador , Criopreservação , Dimetilpolisiloxanos/química , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Células Estromais/patologia , Microambiente Tumoral
5.
Micromachines (Basel) ; 11(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947879

RESUMO

Neurodegenerative diseases are among the most severe problems in aging societies. Various conventional experimental models, including 2D and animal models, have been used to investigate the pathogenesis of (and therapeutic mechanisms for) neurodegenerative diseases. However, the physiological gap between humans and the current models remains a hurdle to determining the complexity of an irreversible dysfunction in a neurodegenerative disease. Therefore, preclinical research requires advanced experimental models, i.e., those more physiologically relevant to the native nervous system, to bridge the gap between preclinical stages and patients. The neural microphysiological system (neural MPS) has emerged as an approach to summarizing the anatomical, biochemical, and pathological physiology of the nervous system for investigation of neurodegenerative diseases. This review introduces the components (such as cells and materials) and fabrication methods for designing a neural MPS. Moreover, the review discusses future perspectives for improving the physiological relevance to native neural systems.

6.
Nat Biomed Eng ; 3(7): 509-519, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31148598

RESUMO

Patient-specific ex vivo models of human tumours that recapitulate the pathological characteristics and complex ecology of native tumours could help determine the most appropriate cancer treatment for individual patients. Here, we show that bioprinted reconstituted glioblastoma tumours consisting of patient-derived tumour cells, vascular endothelial cells and decellularized extracellular matrix from brain tissue in a compartmentalized cancer-stroma concentric-ring structure that sustains a radial oxygen gradient, recapitulate the structural, biochemical and biophysical properties of the native tumours. We also show that the glioblastoma-on-a-chip reproduces clinically observed patient-specific resistances to treatment with concurrent chemoradiation and temozolomide, and that the model can be used to determine drug combinations associated with superior tumour killing. The patient-specific tumour-on-a-chip model might be useful for the identification of effective treatments for glioblastoma patients resistant to the standard first-line treatment.


Assuntos
Bioimpressão/métodos , Quimiorradioterapia/métodos , Glioblastoma/tratamento farmacológico , Dispositivos Lab-On-A-Chip , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Combinação de Medicamentos , Avaliação de Medicamentos , Sinergismo Farmacológico , Células Endoteliais , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Oxigênio , Temozolomida/farmacologia , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...